Early autoregulation of symbiotic root nodulation in soybeans.

نویسنده

  • S T Takats
چکیده

Autoregulation of symbiotic root nodulation in soybean seedlings (Glycine max L. Merrill cv Pride 216) was studied following double inoculation of primary roots with Bradyrhizobium japonicum 110. When the second inoculation was given 10 or 17 hours after the first, the nodulation in the first-inoculated region of the root was suppressed. The effect was eliminated if B. japonicum 110 containing Tn5 insertions in the ;common' nod ABC genes was used for the second inoculation, indicating the requirement for changes in the root mediated by these bacterial genes. When the root cortex in the suppressed basal region was examined 3 days after inoculation, cell division centers were present in numbers not significantly different from the numbers in control roots given a sham second inoculation; their size distribution, however, showed a failure of enlargement compared with controls.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shoot-applied MeJA suppresses root nodulation in Lotus japonicus.

To maintain a symbiotic balance, leguminous plants have a systemic regulatory system called autoregulation of nodulation (AUT). Since AUT is schematically similar to systemic resistance found in plant-pathogen interactions, we examined the effects of methyl jasmonate (MeJA) or methyl salicylate (MeSA) on nodulation in Lotus japonicus. Shoot-applied MeJA strongly suppressed nodulation in the wil...

متن کامل

Autoregulation of nodulation interferes with impacts of nitrogen fertilization levels on the leaf-associated bacterial community in soybeans.

The diversities leaf-associated bacteria on nonnodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans were evaluated by clone library analyses of the 16S rRNA gene. To analyze the impact of nitrogen fertilization on the bacterial leaf community, soybeans were treated with standard nitrogen (SN) (15 kg N ha(-1)) or heavy nitrogen (HN) (615 kg N ha(-1)) fertilizat...

متن کامل

Restriction of Nodulation by Bradyrhizobium japonicum Is Mediated by Factors Present in the Roots of Glycine max.

Reciprocal grafting experiments done using soybean plant introduction genotypes indicated that restriction of nodulation by Bradyrhizobium japonicum is determined by the genotype of the root and is dependent on plant growth temperature. Microscopic analyses indicated that the soybean plant introduction genotypes restrict nodulation of B. japonicum at symbiotic stages which occur both before and...

متن کامل

Lack of Systemic Suppression of Nodulation in Split Root Systems of Supernodulating Soybean (Glycine max [L.] Merr.) Mutants.

Wild-type soybean (Glycine max [L] Merr. cv Bragg) and a nitrate-tolerant supernodulating mutant (nts382) were grown in split root systems to investigate the involvement of the autoregulation response and the effect of timing of inoculation on nodule suppression. In Bragg, nodulation of the root portion receiving the delayed inoculation was suppressed nearly 100% by a 7-day prior inoculation of...

متن کامل

Symbiotic effect of Bradyrhizobium yuanmingense isolates over Bradyrhizobium japonicum with soybean

Symbiotic effect of twenty one indigenous Bradyrhizobium yuanmingense strains obtained from nodules of soybean cultivated in India was comparatively evaluated with B. japonicum ASR011 on soybean cv. JS335 for improved nodulation and plant growth performance under greenhouse conditions. Significant variation in symbiotic potential among native B. yuanmingense strains was observed and few of them...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 94 3  شماره 

صفحات  -

تاریخ انتشار 1990